Evaluation and computational characterization of the facilitated transport of Glc carbon C-1 oxime reactivators across a blood brain barrier model.

نویسندگان

  • Jayendra B Bhonsle
  • Robert Causey
  • Benjamin L Oyler
  • Cecilia Bartolucci
  • Doriano Lamba
  • Alessandro Pesaresi
  • Nanaji K Bhamare
  • Iswarduth Soojhawon
  • Gregory E Garcia
چکیده

We are evaluating a facilitative transport strategy to move oximes across the blood brain barrier (BBB) to reactivate inhibited brain acetylcholinesterase (AChE). We selected glucose (Glc) transporters (GLUT) for this purpose as these transporters are highly represented in the BBB. Glc conjugates have successfully moved drugs across the BBB and previous work has shown that Glc-oximes (sugar-oximes, SOxs) can reduce the organophosphonate induced hypothermia response. We previously evaluated the reactivation potential of Glc carbon C-1 SOxs. Here we report the reactivation parameters for VX- and GB-inhibited human (Hu) AChE of the best SOx (13c) and our findings that the kinetics are similar to those of the parent oxime. Although crystals of Torpedo californica AChE were produced, neither soaked or co-crystallized experiments were successful at concentrations below 20mM 13c, and higher concentrations cracked the crystals. 13c was non-toxic to neuroblastoma and kidney cell lines at 12-18 mM, allowing high concentrations to be used in a BBB kidney cell model. The transfer of 13c from the donor side was asymmetric with the greatest loss of 13c from the apical- or luminal-treated side. There was no apparent transfer from the basolateral side. The 13cP(app) results indicate a 'low' transport efficiency; however, mass accounting revealed only a 20% recovery from the apical dose in which high concentrations were found in the cell lysate fraction. Molecular modeling of 13c through the GLUT-1 channel demonstrated that transport of 13c was more restricted than Glc. Selected sites were compared and the 13c binding energies were greater than two times those of Glc.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New structural scaffolds for centrally acting oxime reactivators of phosphylated cholinesterases.

We describe here the synthesis and activity of a new series of oxime reactivators of cholinesterases (ChEs) that contain tertiary amine or imidazole protonatable functional groups. Equilibration between the neutral and protonated species at physiological pH enables the reactivators to cross the blood-brain barrier and distribute in the CNS aqueous space as dictated by interstitial and cellular ...

متن کامل

A Computational Study of Oxygen Transport in the Body of Living Organism (RESEARCH NOTE)

Oxygen is an essential part of the living organism. It is transported from blood to the body tissue by the systematic circulation and large part of it is stored in the blood flowing in capillaries. In this work we discuss a mathematical model for oxygen transport in tissues. The governing equations are established assuming that the blood is flowing along a co-axial cylindrical capillary inside ...

متن کامل

A Computational Study of Oxygen Transport in the Body of Living Organism

Oxygen is an essential part of the living organism. It is transported from blood to the body tissue by the systematic circulation and large part of it is stored in the blood flowing in capillaries. In this work we discuss a mathematical model for oxygen transport in tissues. The governing equations are established assuming that the blood is flowing along a co-axial cylindrical capillary inside ...

متن کامل

Refinement of structural leads for centrally acting oxime reactivators of phosphylated cholinesterases.

We present a systematic structural optimization of uncharged but ionizable N-substituted 2-hydroxyiminoacetamido alkylamine reactivators of phosphylated human acetylcholinesterase (hAChE) intended to catalyze the hydrolysis of organophosphate (OP)-inhibited hAChE in the CNS. Starting with the initial lead oxime RS41A identified in our earlier study and extending to the azepine analog RS194B, re...

متن کامل

Computational simulations of nanoparticle transport in a three-dimensional capillary network

Objective(s): Multifunctional nanomedicine is the new generation of medicine, which is remarkably promising and associated with the minimum toxicity of targeted therapy. Distribution and transport of nanoparticles (NPs) in the blood flow are essential to the evaluation of delivery efficacy. Materials and Methods: In the present study, we initially designed a phantom based on Murray’s mini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemico-biological interactions

دوره 203 1  شماره 

صفحات  -

تاریخ انتشار 2013